當工作或學習進行到一定階段或告一段落時,需要回過頭來對所做的工作認真地分析研究一下,肯定成績,找出問題,歸納出經驗教訓,提高認識,明確方向,以便進一步做好工作,并把這些用文字表述出來,就叫做總結。相信許多人會覺得總結很難寫?以下我給大家整理了一些優質的總結范文,希望對大家能夠有所幫助。
高中數學必考知識點總結篇一
設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,并稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f(x0) ,即導數第一定義
設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,并稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f(x0) ,即 導數第二定義
如果函數 y = f(x) 在開區間 i 內每一點都可導,就稱函數f(x)在區間 i 內可導。這時函數 y = f(x) 對于區間 i 內的每一個確定的 x 值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數 y = f(x) 的導函數,記作 y, f(x), dy/dx, df(x)/dx。導函數簡稱導數。
1.利用導數研究多項式函數單調性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2.用導數求多項式函數單調區間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的交集的對應區間為增區間; f(x)<0的解集與定義域的交集的對應區間為減區間
學習了導數基礎知識點,接下來可以學習高二數學中涉及到的導數應用的部分。
高中數學必考知識點總結篇二
1、一般數列的通項an與前n項和sn的關系:an=
2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關于n的一次式;當d=0時,an是一個常數。
3、等差數列的前n項和公式:sn=
sn=
sn=
當d≠0時,sn是關于n的二次式且常數項為0;當d=0時(a1≠0),sn=na1是關于n的正比例式。
4、等比數列的通項公式: an= a1qn-1an= akqn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數列的前n項和公式:當q=1時,sn=n a1 (是關于n的正比例式);
當q≠1時,sn=
sn=
1、等差數列{an}的任意連續m項的和構成的數列sm、s2m-sm、s3m-s2m、s4m- s3m、……仍為等差數列。
2、等差數列{an}中,若m+n=p+q,則
3、等比數列{an}中,若m+n=p+q,則
4、等比數列{an}的任意連續m項的和構成的數列sm、s2m-sm、s3m-s2m、s4m- s3m、……仍為等比數列。
5、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
6、兩個等比數列{an}與{bn}的積、商、倒數組成的數列仍為等比數列。
7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
9、三個數成等差數列的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,a+d,a+3d
10、三個數成等比數列的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)
高中數學必考知識點總結篇三
1、平面的基本性質:
公理1如果一條直線的兩點在一個平面內,那么這條直線在這個平面內;
公理2過不在一條直線上的三點,有且只有一個平面;
公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
2、空間點、直線、平面之間的位置關系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內,最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點a與平面一點b的連線和平面內不經過點b的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個平面內。
求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角
1、直線與平面平行(核心)
定義:直線和平面沒有公共點
判定:不在一個平面內的一條直線和平面內的一條直線平行,則該直線平行于此平面(由線線平行得出)
性質:一條直線和一個平面平行,經過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個平面沒有公共點
判定:一個平面內有兩條相交直線平行于另一個平面,則這兩個平面平行
性質:兩個平面平行,則其中一個平面內的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
1、直線與平面垂直
定義:直線與平面內任意一條直線都垂直
判定:如果一條直線與一個平面內的兩條相交的直線都垂直,則該直線與此平面垂直
性質:垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
直線和平面所成的角:【0、90】度,平面內的一條斜線和它在平面內的射影說成的銳角,特別規定垂直90度,在平面內或者平行0度
2、平面與平面垂直
定義:兩個平面所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內分別作垂直于棱的兩條射線所成的角)
判定:一個平面過另一個平面的垂線,則這兩個平面垂直
性質:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直
【本文地址:http://m.nehjyms.cn/zuowen/1901033.html】